INTRODUCTION

Thousand Springs State Park is a spring water oasis amidst the desert of Idaho's Snake River Plain (SRP). The park is divided into six sub-units: Box Canyon Matural Preserve, Billingsley Creek, Malad Gorge, Ritter Island, Kelton Trails, and Miagara Springs. Thousand Springs captures the powerful and delicate nature of arguably the most valuable resource in the state of Idaho: water (Figure 1).

GEOLOGY

and created cataracts and waterfalls that can be seen in the park. Salt Lake in Utah. In Idaho, the catastrophic flood carved and shaped channels in the Quaternary basalts southeastern Idaho and eastern Nevada. Water left behind after the Bonneville flood formed the Great River Plain. Lake Bonneville was an ancient lake that occupied much of north Utah and small portions of Lake Bonneville released over a period of a couple of weeks and flowed northward across the Snake ville Flood that occurred 14,500 years ago where an estimated 1,200 miles (5,000 km²) of water from Quaternary lava flows. Another influence to the shape of the Snake River was the catastrophic Bonnetributary streams carved paths along the plain, many of their major deviations or bends were shaped by the park show the thickness and volume of the Quaternary basalt flows. While the Snake River and its gorges like Malad Canyon, steep-walled canyons like the Snake River Canyon, and the cataracts around from the ancient Snake River and its tributaries are interbedded with some of these basalt flows. Deep flows come from volcanic cones distributed across the crescent-shaped SRP. Gravel, sand, silt and clay ous Quaternary basalt flows that erupted from 2 million to 2,000 years ago. The Quaternary basalt rocks of the Chalk Hills and Glenns Ferry Formations. Capping the Glenns Ferry Formation are numerthe Yellowstone Hotspot. Interbedded with the rhyolite and basalt flows are Tertiary-aged sedimentary The oldest rocks of the central Snake River Plain are Tertiary basalt and rhyolite flows related to

River Plain (ESRP) aquifer.

zenoż sinsslov

Figure 2. Diagram of the eastern Snake

and river

EASTERN SNAKE RIVER PLAIN AQUIFER

porosity is the amount of pore

important factor is porosity,

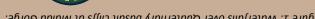
aquitard. Another

sealing sediments.

In this case of the SRP aquifer, clay layers interbedded with the Quaternary basalt

flows acts as the

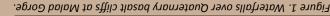
The SRP is a large arcuate volcanic plateau in southern Idaho that shows the path cut by the Yellowstone hotspot. Beneath that plateau lies the SRP aquifer. An aquifer is an underground reservoir of water stored in rocks (Figure 2). Aquifers must have a good basal layer to seal in water, also called an aquitard. An aquitard is layer of rock or sediment that doesn't allow water to filter through the layer easily or at all, clay or shale are effective


and sediment

basalt flows

reservoir

ESRP aquifer


5019

Dennis M. Feeney

STATE PARK

THOUSAND SPRINGS

CEOTOGY OF

ESRP AQUIFER cont'd

space available in the rock, high porosity means more water can be stored in a rock. The SRP has high porosity found in sand, gravel and in cracks and fractures in basalt. Permeability is the connectivity of the pore space, or ability for water to flow through a rock. High permeability is necessary for discharge and recharge of the aquifer. Springs occur when the top of the saturated zone, also called the water table, intersects with the surface.

Thousand Spring State Park is the safth (Figure 3). The park is home to 11 of the largest 65 springs in aquifer intersects the surface of the earth (Figure 3). The park is home to 11 of the largest 65 springs in the U.S. Some springs like Niagara and Crystal gush from the steep canyon walls of the Snake River be neath the Quaternary basalts. While springs in Box Canyon or Ritter Island bubble up from underground to form crystal clear pools (Figure 4). The ESRP aquifer is recharged from rain and snow (10%), rivers, streams, and reservoirs (13%), recharge from small neighboring high valley aquifers (18%), and largely from irrigation (60%). Natural discharge from the ESRP aquifer happens at springs found along the Snake from irrigation (60%). Natural discharge from the ESRP aquifer happens at springs found along the Snake cultural, residential, and municipal needs. Over the last 70 years increased withdrawal of water from the ESPR aquifer for agricultural and municipal need and changes in irrigation practices has led to a

State Park Thousand Springs Наветтап gan qqnq nomin Alis Lone bl Montana 🐇

agricultural Ehriving and the needs of a in southern Idaho, 300,000 residents more than drinking water for the sole source of as well as protect Springs State park, of the Thousand health and beauty breserve the is necessary to of the ESRP aquifer management Thoughtful Thousand Springs. discharge from to amulov reduction in

community.

Figure 4. Cataracts over Quaternary basalts and springs bubbling up from the eastern Snake River Plain aquifer below at Box Canyon Nature Preserve of Thousand Springs State Park.

CEOFOCICYT 20RVEY LDYHO CEOFOCICYT 20RVEY

uba.odebiu@sgi

idahogeology.org

Boise Office Idaho Water Center, Suite 2018 322 Front Street Boise, ID. 83702-7359 Boise, IS. 83702-4452 Moscow Office Morrill Hall, Third Floor University of Idaho 875 Perimeter Dr. MS 3014 Moscow, ID. 83844-3014 208-885-7991

Figure 3. Location and flow direction of the eastern Snake River Plain aquifer.

Sources: Esri, Garmin, USGS, NPS